Anomaly detection is an essential task in the analysis of dynamic networks, offering early warnings of abnormal behavior. We present a principled approach to detect anomalies in dynamic networks that integrates community structure as a foundational model for regular behavior. Our model identifies anomalies as irregular edges while capturing structural changes. Our approach leverages a Markovian framework for temporal transitions and latent variables for community and anomaly detection, inferring hidden parameters to detect unusual interactions. Evaluations on synthetic and real-world datasets show strong anomaly detection across various scenarios. In a case study on professional football player transfers, we detect patterns influenced by club wealth and country, as well as unexpected transactions both within and across community boundaries. This work provides a framework for adaptable anomaly detection, highlighting the value of integrating domain knowledge with data-driven techniques for improved interpretability and robustness in complex networks.
Read full abstract