Background: As the Internet of Things (IoT) expands, it enables new forms of communication, including interactions mediated by teleoperated robots like avatars. While extensive research exists on the effects of these devices on communication partners, there is limited research on the impact on the operators themselves. This study aimed to objectively assess the psychological and physiological effects of operating a teleoperated robot, specifically Telenoid, on its human operator. Methods: Twelve healthy participants (2 women and 10 men, aged 18–23 years) were recruited from Osaka University. Participants engaged in two communication sessions with a first-time partner: face-to-face and Telenoid-mediated. Telenoid is a minimalist humanoid robot teleoperated by a participant. Blood samples were collected before and after each session to measure hormonal and oxidative markers, including cortisol, diacron reactive oxygen metabolites (d-ROMs), and the biological antioxidat activity of plasma (BAP). Psychological stress was assessed using validated questionnaires (POMS-2, HADS, and SRS-18). Results: A trend of a decrease in cortisol levels was observed during Telenoid-mediated communication, whereas face-to-face interactions showed no significant changes. Oxidative stress, measured by d-ROMs, significantly increased after face-to-face interactions but not in Telenoid-mediated sessions. Significant correlations were found between oxytocin and d-ROMs and psychological stress scores, particularly in terms of helplessness and total stress measures. However, no significant changes were observed in other biomarkers or between the two conditions for most psychological measures. Conclusions: These findings suggest that cortisol and d-ROMs may serve as objective biomarkers for assessing psychophysiological stress during robot-mediated communication. Telenoid’s minimalist design may help reduce social pressures and mitigate stress compared to face-to-face interactions. Further research with larger, more diverse samples and longitudinal designs is needed to validate these findings and explore the broader impacts of teleoperated robots.
Read full abstract