With the gradual increase in the proportion of new energy sources in the power grid, there is an urgent need for more flexible resources to participate in short-term regulation. The impact of communication network channel quality will continue to magnify, and factors such as communication latency may directly affect the efficiency and effectiveness of resource regulation. In this context of a large number of flexible demand-side resources accessing the grid, this article proposes a bidirectional channel delay measurement method based on MQTT (Message Queuing Telemetry Transport). It can effectively evaluate the real-time performance of communication links, considering that resources mainly access the grid through the public network. Subsequently, focusing on two typical types of resources on the demand side, namely, split air conditioners and central air conditioners, this article proposes an assessment method for correcting the response capabilities of air conditioning resources considering communication latency. Experimental simulations are conducted, and the results demonstrate that under given communication conditions, this method can more accurately estimate the response capability of air conditioners. This provides a basis for formulating more reasonable scheduling strategies, avoiding excessive or insufficient resource regulation caused by communication issues, and aiding the power grid in achieving precise scheduling.