Recent developments and the widespread use of IoT-enabled technologies has led to the Research and Development (R&D) efforts in green communication. Traditional dynamic-source routing is one of the well-known protocols that was suggested to solve the information dissemination problem in an IoT environment. However, this protocol suffers from a high level of energy consumption in sensor-enabled device-to-device and device-to-base station communications. As a result, new information dissemination protocols should be developed to overcome the challenge of dynamic-source routing, and other similar protocols regarding green communication. In this context, a new energy-efficient routing protocol (EFRP) is proposed using the hybrid adopted heuristic techniques. In the densely deployed sensor-enabled IoT environment, an optimal information dissemination path for device-to-device and device-to-base station communication was identified using a hybrid genetic algorithm (GA) and the antlion optimization (ALO) algorithms. An objective function is formulated focusing on energy consumption-centric cost minimization. The evaluation results demonstrate that the proposed protocol outperforms the Greedy approach and the DSR protocol in terms of a range of green communication metrics. It was noticed that the number of alive sensor nodes in the experimental network increased by more than 26% compared to the other approaches and lessened energy consumption by about 33%. This leads to a prolonged IoT network lifetime, increased by about 25%. It is evident that the proposed scheme greatly improves the information dissemination efficiency of the IoT network, significantly increasing the network’s throughput.