The effect of hydrostatic pressure and cation type on chloride ion transport in marine underwater concrete cannot be ignored. The study of the chloride ion transport behavior of concrete under the effect of hydrostatic pressure and cation type coupling can provide a basis for durability design and the protection of marine concrete. In this work, the chloride ion transport behavior of marine concrete in four common chloride salt solutions under different hydrostatic pressures is studied by a hydrostatic pressure test device developed by the authors. The results show that hydrostatic pressure and its action time significantly influence the chloride ion transport behavior in marine concrete; the higher the hydrostatic pressure of concrete, the faster the chloride ion transport rate. The longer the time, the more chloride ions accumulated in the same position, and the farther the chloride ion transport distance. Cation type has a certain influence on the transport process of chloride ions. Under the same test conditions, the chloride ion transport rate in a divalent cation solution is about 5% higher than that in a monovalent cation solution. The results also show that the chloride ion binding capacity under hydrostatic pressure is only 10~20% of that under natural diffusion. Using the test results, a predictive model of a chloride ion apparent transport coefficient based on the hydrostatic pressure and hydrostatic pressure action time corrected by a cation type influence coefficient is established.