Currently, solving global environmental problems is recognized as an important task for humanity. In particular, automobile exhaust gases, which are pointed out as the main cause of environmental pollution, are increasing environmental pollutants and pollution problems, and exhaust gas regulations are being strengthened around the world. In particular, when an engine is idling while a car is stopped and not running, a lot of fine dust and toxic gases are emitted into the atmosphere due to the unnecessary fuel consumption of the engine. These idling emissions are making the Earth’s environmental pollution more serious and depleting limited oil resources. Biodiesel, which can replace diesel fuel, generally has similar physical properties to diesel fuel, so it is receiving a lot of attention as an eco-friendly alternative fuel. Biodiesel can be extracted from various substances of vegetable or animal origin and can also be extracted from waste resources discarded in nature. In this study, we used biodiesel blended fuel (B20) in a CRDI diesel engine to study the characteristics of gases emitted during combustion in the engine’s idling state. There were a total of four types of biodiesels used in the experiment. New Soybean Oil and New Lard Oil extracted from new resources and Waste Soybean Fried Oil and Waste Barbecue Lard Oil extracted from waste resources were used, and the gaseous substances emitted during combustion with pure diesel fuel and with the biodiesels were compared and analyzed. It was confirmed that all four B20 biodiesels had a reduction effect on PM, CO, and HC emissions, excluding NOx emissions, compared to pure diesel in terms of the emissions generated during combustion under no-load idling conditions. In particular, New Soybean Oil had the highest PM reduction rate of 20.3% compared to pure diesel, and Waste Soybean Fried Oil had the highest CO and HC reduction rates of 36.6% and 19.3%, respectively. However, NOx was confirmed to be highest in New Soybean Oil, and Waste Barbecue Lard Oil was the highest in fuel consumption.