Solar irradiance prediction is a crucial component in the application of photovoltaic power generation, playing a vital role in optimizing energy production, managing energy storage, and maintaining grid stability. This paper proposes an irradiance prediction method based on a functionally structured inverted transformer network, which maintains the channel independence of each feature in the model input and extracts the correlations between different features through an Attention mechanism, enabling the model to effectively capture the relevant information between various features. After the channel mixing of different features is completed through the Attention mechanism, a linear network is used to predict the irradiance sequence. A data processing method tailored to the prediction model used in this paper is designed, which employs a comprehensive data preprocessing approach combining mutual information, multiple imputation, and median filtering to optimize the raw dataset, enhancing the overall stability and accuracy of the prediction project. Additionally, a Dingo optimization algorithm suitable for the self-tuning of deep learning model hyperparameters is designed, improving the model’s generalization capability and reducing deployment costs. The artificial intelligence (AI) model proposed in this paper demonstrates superior prediction performance compared to existing common prediction models in irradiance data forecasting and can facilitate further applications of photovoltaic power generation in power systems.