Foreign object debris (FOD) includes any unwanted and unintentional material lying on the charging lane or parking lots, posing a risk to the wireless charging system, the vehicle, or the people inside. FOD in an Electric Vehicle (EV) wireless charging system can cause problems, including decreased charging efficiency, safety risks, charging system damage, communication issues, and health risks. To address this problem, this paper proposes the deep learning object detection network approach of using YOLOv4 (You Only Look Once), which is a single-shot detector. Additionally, for real-time implementation, YOLOv4-Tiny is suggested, which is a compressed version of YOLOv4 designed for devices with low computational power. YOLOv4-Tiny enables faster inferences and facilitates the deployment of FOD detectors on edge devices. The algorithm is trained using the FOD dataset, consisting of images of common debris on runways or taxiways. Furthermore, utilizing the concept of transfer learning, the last few layers of the pre-trained YOLOv4 model are modified using the COCO (Common Objects in Context) dataset to transfer features to the new network and retrain the model on the FOD dataset. The results obtained using this YOLOv4 model yielded a precision rate of 99.05%, while the results from YOLOv4-Tiny achieved a precision rate of 97.74%, with an average inference time of 150 ms under the ambient light and weather conditions.
Read full abstract