How does the brain code the meanings conveyed by language? Neuroimaging studies have investigated this by linking neural activity patterns during discourse comprehension to semantic models of language content. Here, we applied this approach to the production of discourse for the first time. Participants underwent fMRI while producing and listening to discourse on a range of topics. We used a distributional semantic model to quantify the similarity between different speech passages and identified where similarity in neural activity was predicted by semantic similarity. When people produced discourse, speech on similar topics elicited similar activation patterns in a widely distributed and bilateral brain network. This network was overlapping with, but more extensive than, the regions that showed similarity effects during comprehension. Critically, cross-task neural similarities between comprehension and production were also predicted by similarities in semantic content. This result suggests that discourse semantics engages a common neural code that is shared between comprehension and production. Effects of semantic similarity were bilateral in all three RSA analyses, even while univariate activation contrasts in the same data indicated left-lateralised BOLD responses. This indicates that right-hemisphere regions encode semantic properties even when they are not activated above baseline. We suggest that right-hemisphere regions play a supporting role in processing the meaning of discourse during both comprehension and production.
Read full abstract