Recent increases in the demand for rare earth elements (REE) have contributed to various countries' interest in exploration of their REE deposits, including within Canada. Current limited knowledge of REE distribution in undisturbed subarctic environments and their bioaccumulation within northern species is addressed through a collaborative community-based environmental monitoring program in Nunavik (Quebec, Canada). This study provides background REE values (lanthanides + yttrium) and investigates REE anomalies (i.e., deviations from standard pattern) across terrestrial, freshwater, and marine ecosystems in an area where a REE mining project is in development. Results are characteristic of a biodilution of REE, with the highest mean total REE concentrations (ΣREE) reported in sediments (102 nmol/g) and low trophic level organisms (i.e., biofilm, macroalgae, macroinvertebrates, common mussels, and reindeer lichens; 101–102 nmol/g), and the lowest mean concentrations in higher-level consumers (i.e., goose, ptarmigan, char, whitefish, cod, sculpin and seal; 10−2 - 101 nmol/g). The animal tissues are of importance to northern villages and analyses demonstrate a species-specific bioaccumulation of REE, with mean concentrations up to 40 times greater in liver compared to muscle, with bones and kidneys presenting intermediate concentrations and the lowest in blubber. Further, a tissue-specific fractionation was presented, with significant light REE (LREE) enrichment compared to heavy REE (HREE) in consumer livers (LREE/HREE ≅ 101) and the most pronounced negative cerium (Ce) anomalies (<0.80) in liver and bones of fish species. These fractionation patterns, along with novel negative relationships presented between fish size (length, mass) and Ce anomalies suggest metabolic, ecological, and/or environmental influences on REE bioaccumulation and distribution within biota. Background concentration data will be useful in the establishment of REE guidelines; and the trends discussed support the use of Ce anomalies as biomarkers for REE processing in animal species, which requires further investigation to better understand their controlling factors.
Read full abstract