In this paper, we present a 0.3 V body-driven operational transconductance amplifier (OTA) that exploits a biasing approach based on the use of a replica loop with gain. An auxiliary amplifier is exploited both in the current mirror load of the first stage of the OTA and in the replica loop in order to achieve super-diode behavior, resulting in low mirror gain error, which enhances CMRR, and robust biasing. Common-mode feedforward, provided by the replica loop, further enhances CMRR. Simulations in a 180 nm CMOS technology show 65 dB gain with 2 kHz unity-gain frequency on a 200 pF load when consuming 9 nW. Very high linearity with a 0.24% THD at 90% full-scale and robustness to PVT variations are also achieved.
Read full abstract