Whole-genome duplication (WGD) events are widespread in plants and animals, thus their long-term evolutionary contribution has long been speculated, yet a specific contribution is difficult to verify. Here, we show that ɛ-WGD and ζ-WGD contribute to the origin and evolution of bona fide brassinosteroid (BR) signaling through the innovation of active BR biosynthetic enzymes and active BR receptors from their respective ancestors. We found that BR receptors BRI1 (BR INSENSITIVE 1) and BRL1/3 (BRI1-LIKES 1/3) derived by ɛ-WGD and ζ-WGD, which occurred in the common ancestor of angiosperms and seed plants, respectively, while orphan BR receptor BRL2 first appeared in stomatophytes. Additionally, CYP85A enzymes synthesizing the bioactive BRs derived from a common ancestor of seed plants, while its sister enzymes CYP90 synthesizing BR precursors presented in all land plants, implying possible ligand-receptor coevolution. Consistently, the island domains (IDs) responsible for BR perception in BR receptors were most divergent among different receptor branches, supporting ligand-driven evolution. As a result, BRI1 was the most diversified BR receptor in angiosperms. Importantly, relative to the BR biosynthetic DET2 gene presented in all land plants, BRL2, BRL1/3 and BRI1 had high expression in vascular plants ferns, gymnosperms and angiosperms, respectively. Notably, BRI1 is the most diversified BR receptor with the most abundant expression in angiosperms, suggesting potential positive selection. Therefore, WGDs initiate a neofunctionalization process diverged by ligand-perception and transcriptional expression, which might optimize both BR biosynthetic enzymes and BR receptors, likely contributing to the evolution of land plants, especially seed plants and angiosperms.
Read full abstract