The benefits of InSAR to the civil engineering industry have been demonstrated on many occasions, however there is still a limited uptake by end-users, due to perceived differences between data providers and uncertainty around how to interpret results. This paper critically compares three datasets for London: Radarsat-2 (RS2) from 2011 to 2015, TerraSAR-X (TSX) from 2011 to 2017, and Sentinel-1 (STL1) from 2015 to 2017. Two of the datasets (TSX & RS2) were processed by commercial data providers, while the STL1 data were processed using ENVI ® SARscape ® by the authors. The results show an inverse relationship between the Pearson Correlation Coefficient and absolute total displacement of Persistent Scatterers (PS). There is a strong correlation between datasets for total displacement greater than 5 mm, but a weak or no correlation in the 0–3 mm range. Consequently, standard commercial InSAR datasets, processed with no a priori knowledge of the area of interest, have error margins below 3–5 mm but correctly detect all deformation phenomena exceeding this threshold. RS2-TSX both capture the spatial extent of the investigated area of dewatering induced subsidence, however STL1 measures a much broader, less pronounced zone of heave than TSX. Thematic collection: This article is part of the Remote sensing for site investigations on Earth and other planets collection available at: https://www.lyellcollection.org/cc/remote-sensing-for-site-investigations-on-earth-and-other-planets
Read full abstract