Building integrated photovoltaics (BIPVs) consist of PV panels that are integrated into a building as part of its construction. This technology has advantages such as the production of electricity without necessitating additional land area. This paper provides a literature review on recent developments in urban building energy modelling, including tools and methods as well as how they can be used to predict the effect of PV systems on building outdoor and indoor environments. It is also intended to provide a critical analysis on how PV systems affect the urban environment, both from an energy and a comfort point of view. The microclimate, namely the urban heat island concept, is introduced and related to the existence of PV systems. It is concluded that urban building energy models (UBEMs) can be effective in studying the performance of PV systems in the urban environment. It allows one to simultaneously predict building energy performance and microclimate effects. However, there is a need to develop new methodologies to overcome the challenges associated with UBEMs, especially those concerning non-geometric data, which lead to a major source of errors, and to find an effective method to predict the effect of PV systems in the urban environment.
Read full abstract