The work focuses on using the isophote method to construct a 45P/Honda comet model. At the same time, important problems were solved for modeling the physical surface of a comet and studying the structure of the cometary nucleus. This is due to the fact that, on the basis of modern studies of meteoroids, complex internal processes and dynamic phenomena on their surface have been discovered. The study of comet nuclei is of great importance, since, according to the theory of their formation, they were formed from the matter of the protoplanetary disk. Thus, modeling and analysis of the structure of various comets make it possible to create a more accurate theory of their evolution. This made it possible to evaluate the structural parameters more accurately and reliably. This allowed for the evaluation of the structural parameters more accurately and reliably. Isophotes of the nucleus, coma and tail of comet 45P/Honda were determined. Depending on the point where the comet is located on the trajectory of its orbit, one can see structural changes in the comet’s brightness from the nucleus to the peripheral region. Near the cometary nucleus, the isophotes are circular in shape. If in the center of the model the isophotes have a shape close to narrow rings, then elongations in the direction of the cometary tail and thickening of their structure appear towards the peripheral regions. Large and small tail rays can be distinguished, and the nucleus is well marked. In the future, the author’s method for modeling isophotes, developed in this work, will allow studying the structure of various cometary objects, and, based on the results, determine the degree of comet activity. On the other hand, about the development of the theory of dynamic processes and the evolution of the Solar system, one can use the data on changes in cometary activity in the process of its movement around the Sun.
Read full abstract