Fuel ignition quality, measured in the form of Derived Cetane Number (DCN), is an important part of integrating fuels, including sustainable aviation fuels, in compression ignition engines. DCN has been correlated with simulated and/or real spectroscopic measurements as well as other physical and chemical properties, but rarely have these correlations developed into a pathway to application. One application of the correlations is the use of miniaturized onboard fuel sensors that could assist, by using predicted DCN, in real-time feedforward engine control. To aid in the application of developing such DCN fuel sensors, Raman spectra coupled with chemometrics and a selection of influential spectral features were investigated. In this study, the Raman spectra were obtained from a database that included jet fuels, jet fuel mixtures, pure hydrocarbon components, and their weighted mixtures. The resulting Raman spectral database from the experimental measurements included spectra of components that span a wide range of DCNs and covered all the expected chemical functional groups present in a standard jet fuel. Chemometric models were developed to associate Raman spectra with DCN in subsets of the spectral range to aid in sensor miniaturization. The models were tested on jet fuels such as National Jet Fuel Combustion Program fuels designated A-1, A-2, and A-3 along with mixtures of jet fuels that spanned a wide range of DCN, simulating fuels that could represent real-world scenarios. An Artificial Neural Network (ANN) model trained on the fingerprint region (500 cm−1 – 1800 cm−1) of the Raman spectra was able to capture the non-linearity of the association between the Raman spectra and DCN with a test R2 score of 0.926, a test MSE of 3.61, and a test MPE of 3.41. Around 97 % of the unseen test samples were predicted within 10 % of the DCN measured with an Ignition Quality Tester. One hundred features of the fingerprint region influencing DCN predictions in the optimal ANN model were extracted using a Global Surrogate (GS) model. A reduced ANN model trained on only these one hundred features performed slightly better with a test R2 score of 0.935, test MSE of 3.19, test MPE of 3.20 and with the entire set of unseen test samples predicted within 10 % of the measured DCN. For assessing applicability of real-time and online DCN sensing, the Raman spectrometer was integrated with a flow cell capable of allowing measurements of DCN in flowing fuel samples and included the optimal ANN model of the fingerprint region and the 100-feature GS-ANN model on a Raspberry Pi computer. A number of unseen F-24/alcohol-to-jet fuel mixtures composed of unknown volumes were tested using the flow cell for DCN, and all of these samples were predicted within 10 % of the measured DCN.
Read full abstract