Chondrosarcomas are well known for their resistance to conventional chemotherapy and radiotherapy treatment regimens, which is particularly detrimental in patients who have unresectable tumors. Recently, inhibition of poly(ADP-ribose) polymerase (PARP) by talazoparib was shown to sensitize chondrosarcoma cell lines to chemotherapy (temozolomide) or radiotherapy, irrespective of isocitrate dehydrogenase (IDH) mutation status. Because two-dimensionally grown cell lines have limitations and may not accurately represent the clinical response to drug treatment, we aimed to use a more representative three-dimensional alginate spheroid chondrosarcoma model. It is important to test therapeutic agents in vitro before testing them in animals or humans; therefore, we aimed to determine the effectiveness of a PARP inhibitor in reducing the viability of chondrosarcoma spheroids. Using a more stringent, complex in vitro model refines future therapeutic options for further investigation in animal models, increasing efficiency, reducing unnecessary animal use, and saving time and cost. (1) Does talazoparib treatment slow or inhibit the growth of chondrosarcoma spheroids, and does an increased treatment duration change the drug's effect? (2) Does talazoparib work in synergy with temozolomide treatment to reduce the viability of chondrosarcoma spheroids? (3) Does talazoparib work in synergy with radiotherapy treatment to reduce the viability of chondrosarcoma spheroids? Three representative conventional chondrosarcoma cell lines (CH2879 [IDH wildtype], JJ012 [IDH1 mutant], and SW1353 [IDH2 mutant]) were cultured as alginate spheroids and treated with talazoparib (0.001 to 10 µM), temozolomide (0.01 to 100 µM), or combinations of these drugs for 3, 7, and 14 days, representing different stages of spheroid growth. The cell lines were selected to represent a variety of IDH mutation statuses and were previously validated in spheroid culturing. Temozolomide was chosen because of its previous success when combined with PARP inhibitors, dissimilar to other commonly used chemotherapies. The effect on spheroid viability was assessed using three cell viability assays. Additionally, spheroid count, morphology, proliferation, and apoptosis were assessed. The effect of talazoparib (5 to 10 nM) combined with ƴ-radiation applied using a 137 C source (0 to 6 Gy) was assessed as surviving fractions by counting the number of spheroids (three). The therapeutic synergy of low-concentration talazoparib (5 to 10 nM) with temozolomide or radiotherapy was determined by calculating Excess over Bliss scores. Talazoparib treatment reduced the spheroid viability of all three cell lines after 14 days (IC 50 ± SD of CH2879: 0.1 ± 0.03 µM, fold change: 220; JJ012: 12 ± 1.4 µM, fold change: 4.8; and SW1353: 1.0 ± 0.2 µM, fold change: 154), compared with 3-day treatments of mature spheroids. After 14 days of treatment, the Excess over Bliss scores for 100 µM temozolomide and talazoparib indicated synergistic efficacy (Excess over Bliss scores: CH2879 59% [lower 95% CI 52%], JJ012 18% [lower 95% CI 8%], and SW1353 55% [lower 95% CI 25%]) of this combination treatment. A stable synergistic effect of talazoparib and radiotherapy was present only in JJ012 spheroids at a 4Gƴ radiation dose (Excess over Bliss score: 22% [lower 95% CI 6%]). In our study, long-term PARP inhibition was more effective than short-term treatment, and only one of the three chondrosarcoma spheroid lines was sensitive to combined PARP inhibition and radiotherapy. These findings suggest subsequent animal studies should focus on long-term PARP inhibition, and temozolomide combined with talazoparib has a higher chance of success than combination with radiotherapy. Combination treatment of talazoparib and temozolomide was effective in reducing the viability of chondrosarcoma spheroids and spheroid growth, regardless of IDH mutation status, providing rationale to replicate this treatment combination in an animal chondrosarcoma model.
Read full abstract