Cholangiocarcinoma (CCA) is a type of malignant tumor originating from the intrahepatic, periportal, or distal biliary system. The treatment means for CCA is limited, and its prognosis is poor. Spatholobi Caulis (SC) is reported to have effects on anti-inflammatory and anti-tumor, but its role in CCA is unclear. First, the potential molecular mechanism of SC for CCA treatment was explored based on network pharmacology, and the core targets were verified by molecular docking and molecular dynamics simulation. Then, we explored the inhibitory effect of SC on the malignant biological behavior of CCA in vitro and in vivo and also explored the related signaling pathways. The effect of combination therapy of SC and cisplatin (DDP) in CCA was also explored. Finally, we conducted a network pharmacological study and simple experimental verification on luteolin, one of the main components of SC. Network pharmacology analysis showed that the core targets of SC on CCA were AKT1, CASP3, MYC, TP53, and VEGFA. Molecular docking and molecular dynamics simulation indicated a good combination between the core target protein and the corresponding active ingredients. In vitro, SC inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of CCA cells. In vivo experiments, the results were consistent with in vitro experiments, and there was no significant hepatorenal toxicity of SC at our dosage. Based on KEGG enrichment analysis, we found PI3K/AKT signaling pathway might be the main signaling pathway of SC action on CCA by using AKT agonist SC79. To explore whether SC was related to the chemotherapy sensitivity of CCA, we found that SC combined with DDP could more effectively inhibit the progression of cholangiocarcinoma. Finally, we found luteolin may inhibit the proliferation and invasion of CCA cells. Our study demonstrates for the first time that SC inhibits the progression of CCA by suppressing EMT through the PI3K-AKT signaling pathway, and SC could enhance the effectiveness of cisplatin therapy for CCA.
Read full abstract