ObjectiveTo investigate the effects of electroacupuncture(EA), gastrodin(Gas), and their combination on the signaling pathways involving Ras homologous gene family member A (RhoA) and Rho-associated frizzled helix protein kinase (ROCK-2) within the striatal region of rats subjected to cerebral ischemia. Additionally, we aim to elucidate the therapeutic effects and potential underlying mechanisms associated with the concurrent application of electroacupuncture and medication in the treatment of cerebral ischemia. MethodsRats were randomly assigned to one of five groups, namely, the sham operation (Sham) group, model group, EA group, Gas group, and the EA combined with Gas group (referred to as the "EA+Gas group"). Each group consisted of ten rats. Following the induction of cerebral ischemia, the EA group and EA+Gas group received EA stimulation at the Baihui(GV20) and Zusanli(ST36) acupoints for 30 min per session, administered once daily for 14 consecutive days. The Gas group and EA+Gas group were intraperitoneally injected with Gas at a dosage of 10 mg/kg, also administered once daily for 14 consecutive days. Nissl staining was employed to observe morphological alterations in the striatal nerve cells of rats in each group. Immunohistochemistry and western blot techniques were employed to evaluate the expression levels of striatal RhoA and ROCK-2 proteins. ResultsIn comparison to the Sham group, the model group exhibited a substantial reduction in the number of striatal nerve cells on the ischemic side, accompanied by notable changes in cell morphology, characterized by reduced cytoplasm, defective and atrophied cytosol, solidified nuclei, loosely arranged cells, and enlarged intercellular spaces. Additionally, there was a notable increase in the positive expression of RhoA and ROCK-2. In contrast, when compared to the model group, the EA, Gas, and EA+Gas groups demonstrated an elevated number of normal nerve cells within the ischemic striatal region, with a significant improvement in cell count and morphology. Furthermore, positive expression levels of RhoA and ROCK-2 were notably reduced in these groups. Compared with the EA group or the GAS group, the number of normal nerve cells in the striatum on the ischemic side of the EA+GAS group was further increased, and the positive expression level of RhoA and ROCK-2 were both further reduced. ConclusionThe protective mechanism underlying the therapeutic efficacy of EA combined with Gas against cerebral ischemic striatal injury in rats may be associated with the inhibition of the activation of the RhoA/ROCK-2 signaling pathway. Importantly, the therapeutic effects observed with the combination of electroacupuncture and medication were superior to those achieved with EA alone or the sole administration of Gas.
Read full abstract