Detection of abnormal situations in mobile systems not only provides predictions about risky situations but also has the potential to increase energy efficiency. In this study, two real-world drives of a battery electric vehicle and unsupervised hybrid anomaly detection approaches were developed. The anomaly detection performances of hybrid models created with the combination of Long Short-Term Memory (LSTM)-Autoencoder, the Local Outlier Factor (LOF), and the Mahalanobis distance were evaluated with the silhouette score, Davies-Bouldin index, and Calinski-Harabasz index, and the potential energy recovery rates were also determined. Two driving datasets were evaluated in terms of chaotic aspects using the Lyapunov exponent, Kolmogorov-Sinai entropy, and fractal dimension metrics. The developed hybrid models are superior to the sub-methods in anomaly detection. Hybrid Model-2 had 2.92% more successful results in anomaly detection compared to Hybrid Model-1. In terms of potential energy saving, Hybrid Model-1 provided 31.26% superiority, while Hybrid Model-2 provided 31.48%. It was also observed that there is a close relationship between anomaly and chaoticity. In the literature where cyber security and visual sources dominate in anomaly detection, a strategy was developed that provides energy efficiency-based anomaly detection and chaotic analysis from data obtained without additional sensor data.
Read full abstract