Polar monomer-induced β-H elimination is a key elementary step in polar polyolefin synthesis by coordination polymerization but remains underexplored. Herein, we show that a bulky neutral Ni catalyst, 1Ph, is not only a high-performance catalyst in ethylene/acrylate copolymerization (activity up to ∼37,000 kg/(mol·h) at 130 °C in a batch reactor, mol % tBA ∼ 0.3) but also a suitable platform for investigation of acrylate-induced β-H elimination. 4Ph-tBu, a novel Ni alkyl complex generated after acrylate-induced β-H elimination and subsequent acrylate insertion, was identified and characterized by crystallography. A combination of catalysis and mechanistic studies reveals effects of the acrylate monomer, bidentate ligand, and the labile ligand (e.g., pyridine) on the kinetics of β-H elimination, the role of β-H elimination in copolymerization catalysis as a chain-termination pathway, and its potential in controlling the polymer microstructure in polar polyolefin synthesis.
Read full abstract