ObjectiveChronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a rare acquired immune-mediated neuropathy. Although microbial infection is potentially a contributing factor, a causative link between CIDP and microbial infection remains unclear. There is also no definitive biomarker for CIDP diagnostics and therapies. The present study aimed to characterize the serum metabolic profile and gut microbiome structure in CIDP.MethodsTargeted metabolomics profiling of serum, using liquid chromatography-mass spectrometry, and metagenomics sequencing of stool samples from a cohort of CIDP and non-CIDP subjects were performed to evaluate serum metabolic profiles and gut microbiome structure in CIDP subjects relative to healthy controls.ResultsMetabolome data revealed that the bile acids profile was perturbed in CIDP with bile acids and arachidonic acid enriched significantly in CIDP versus non-CIDP controls. Metagenome data revealed that opportunistic pathogens, such as Klebsiella pneumonia and Megamonas funiformis, and genes involved in bacterial infection were notably more abundant in CIDP subjects, while gut microbes related to biotransformation of secondary bile acids were abnormal in CIDP versus non-CIDP subjects. Correlation analysis revealed that changes in secondary bile acids were associated with altered gut microbes, including Bacteroides ovatus, Bacteroides caccae, and Ruminococcus gnavus.ConclusionBile acids and arachidonic acid metabolism were disturbed in CIDP subjects and might be affected by the dysbiosis of gut microbial flora. These findings suggest that the combination of bile acids and arachidonic acid could be used as a CIDP biomarker and that modulation of gut microbiota might impact the clinical course of CIDP.
Read full abstract