In this paper, we introduce and study a new kind of graph related to a unitary module [Formula: see text] on a commutative ring [Formula: see text] with identity, namely the annihilators comaximal graph of submodules of [Formula: see text], denoted by [Formula: see text]. The (undirected) graph [Formula: see text] is with vertices of all non-trivial submodules of [Formula: see text] and two vertices [Formula: see text] of [Formula: see text] are adjacent if and only if their annihilators are comaximal ideals of [Formula: see text], i.e. [Formula: see text]. The main purpose of this paper is to investigate the interplay between the graph-theoretic properties of [Formula: see text] and the module-theoretic properties of [Formula: see text]. We study the annihilators comaximal graph [Formula: see text] in terms of the powers of the decomposition of [Formula: see text] to product distinct prime numbers in some special cases.
Read full abstract