Conventional water immersion ultrasonic testing faces limitations due to factors such as environmental conditions, workpiece dimensions, corrosion, and resource wastage. Contact-based coupling methods, which employ coupling media or specific coupling structures, offer a convenient approach to coupling acoustic waves and reduce signal attenuation. However, these methods are time-sensitive and lack adaptability to uneven surfaces, particularly when dealing with workpieces featuring subtle undulations, resulting in significant signal decay. This paper presents an ultrasonic coupling method based on a flexible capillary water column array. By employing a stable and flexible water column array within the micro-channels as the coupling medium, stable contact-based transmission of ultrasonic signals is achieved. The influence of water column array unit dimensions and array structures is explored through theoretical analysis and experimentation, demonstrating lower energy attenuation compared to reductions in water column area. Notably, the tests revealed the method’s adaptability at oblique angles below 20 degrees, which surpasses the performance of submerged detection at similar angles. This research presents an innovative and stable approach for contact-based ultrasonic coupling testing, particularly in scenarios involving dynamic contact scanning between ultrasonic waves and workpieces.