Situated in northeastern Hunan Province, the vein-type Pb-Zn orebodies at Taolin are mainly hosted in NE-/NEE-trending faults between Dayunshan-Mufushan pluton and Neoproterozoic metasedimentary rocks of the Lengjiaxi Group. Hydrothermal mineralization can be divided into five stages: (1) coarse-grained quartz stage, (2) quartz-fluorite-base metal stage, (3) quartz-barite-fluorite-base metal stage, (4) pale pink and colorless quartz stage, and (5) fine-grained quartz stage. In this research, fluid inclusions as well as stable (H-O) and noble gas (He-Ar) isotope compositions were performed to uncover the nature, origin, and evolution of the ore-forming fluids, ore precipitation mechanisms, and mineralization process of the Taolin deposit. Four types of fluid inclusions, i.e., liquid-rich two-phase inclusions (LV-type), pure liquid phase inclusions (PL-type), vapor-rich two-phase inclusions (VL-type), and pure vapor phase inclusions (PV-type), were distinguished in sphalerite, quartz, and fluorite. Microthermometric analysis of fluid inclusion assemblages in sphalerite, quartz, and fluorite from different stages indicates that from the Stage 1 to Stage 5, the homogenization temperatures vary between 168 and 211 °C, between 151 and 198 °C, between 131 and 180 °C, between 132 and 164 °C, and between 118 and 138 °C, respectively, whereas the fluid salinities vary from 12.4 to 16.9 wt% NaCl equivalent, from 9.7 to 14.6 wt% NaCl equivalent, from 5.6 to 10.3 wt% NaCl equivalent, from 3.6 to 9.7 wt% NaCl equivalent, and from 0.9 to 3.8 wt% NaCl equivalent, respectively. The H-O isotope data of quartz and the He-Ar isotopic compositions of sulfide crystals suggest that the ore-forming fluids were a mixture of crust-derived magmatic hydrothermal fluid and meteoric water. Fluid mixing and cooling were likely the crucial mechanisms for ore precipitation.
Read full abstract