A series of biodegradable colorimetric films were prepared by using chitosan and polyvinyl alcohol as matrix, in which, the weight ratio of chitosan: Polyvinyl alcohol was 100: 0, 80: 20, 50: 50, 20: 80, or 0: 100, with addition of 10% (w/w, relative to chitosan) anthocyanins extracted from purple tomatoes (purple tomatoes anthocyanin) as pigment. The aim of this study was to observe the effect of weight ratio (chitosan: Polyvinyl alcohol) on the mechanical properties, contact angle, swelling rate, pH sensitivity, antioxidant properties of chitosan-polyvinyl alcohol/purple tomatoes anthocyanins films, and the antibacterial activity of films produced for pork packaging. In addition, the films as a smart colorimetric indicator for monitoring the freshness of pork was investigated. The results showed that as the ratio of chitosan to polyvinyl alcohol decreases, the elongation at break, hydrophilicity, and swelling rate of the films increased especially from 16.5% to 174.2% for elongation at break and 93.0° to 53.8° for water contact angle, however, the tensile strength decreased from 67.3 to 24.7 MPa. With decreasing of chitosan: Polyvinyl alcohol, the antibacterial activity on pork was decreased, and the antioxidant properties of films increased first then decreased. Fourier transform infrared spectroscopy indicated there were interactions among chitosan, polyvinyl alcohol, and purple tomatoes anthocyanins. The color response of films was depended on pH, as well as the immersion time. The longer immersion resulted in a more pronounced color change. The color changed from purplish red (pH 2-4) to green (pH 5-10) to yellow (pH 10-12). In monitoring the freshness of pork, the film showed a nice visual color change, indicating a potential application in smart packaging. These bio-based materials may be useful alternatives to synthetic plastics for food applications such as active and smart packaging, thereby improving the environmental friendliness and sustainability of the food supply.