The histopathologic diagnosis of colorectal sessile serrated lesions (SSLs) and hyperplastic polyps (HPs) is of low consistency among pathologists. This study aimed to develop and validate a deep learning (DL)-based logical anthropomorphic pathology diagnostic system (LA-SSLD) for the differential diagnosis of colorectal SSL and HP. The diagnosis framework of the LA-SSLD system was constructed according to the current guidelines and consisted of 4 DL models. Deep convolutional neural network (DCNN) 1 was the mucosal layer segmentation model, DCNN 2 was the muscularis mucosa segmentation model, DCNN 3 was the glandular lumen segmentation model, and DCNN 4 was the glandular lumen classification (aberrant or regular) model. A total of 175 HP and 127 SSL sections were collected from Renmin Hospital of Wuhan University during November 2016 to November 2022. The performance of the LA-SSLD system was compared to 11 pathologists with different qualifications through the human-machine contest. The Dice scores of DCNNs 1, 2, and 3 were 93.66%, 58.38%, and 74.04%, respectively. The accuracy of DCNN 4 was 92.72%. In the human-machine contest, the accuracy, sensitivity, and specificity of the LA-SSLD system were 85.71%, 86.36%, and 85.00%, respectively. In comparison with experts (pathologist D: accuracy 83.33%, sensitivity 90.91%, specificity 75.00%; pathologist E: accuracy 85.71%, sensitivity 90.91%, specificity 80.00%), LA-SSLD achieved expert-level accuracy and outperformed all the senior and junior pathologists. This study proposed a logical anthropomorphic diagnostic system for the differential diagnosis of colorectal SSL and HP. The diagnostic performance of the system is comparable to that of experts and has the potential to become a powerful diagnostic tool for SSL in the future. It is worth mentioning that a logical anthropomorphic system can achieve expert-level accuracy with fewer samples, providing potential ideas for the development of other artificial intelligence models.
Read full abstract