Colorectal cancer (CRC) lymph node metastasis (LNM) is a crucial factor affecting the prognosis and treatment outcomes of CRC patients. It has been confirmed that altered glycosylation is a key event during CRC lymphatic metastases. Sialylation is one of the most significant glycosylation alterations in tumors. However, the predictive role of sialylation and sialylated protein in CRC remains elusive, especially in CRC-LNM. In this study, we explored and identified 1102 sialylated glycoproteins in CRC-LNM using metabolic labeling strategy and proteomics analysis. Combined with comprehensive analysis with bioinformatics and machine learning algorithms, we screened 25 prognostic sialylation-related genes (SRGs) to construct a new molecular phenotype (LRSRGs-Phenotype) and a prognostic SRG signature (LRSRGs-related Gene Signature) in CRC. Then, we further confirmed that patients in different phenotypes had different prognosis, molecular biological characteristics, immune cell infiltration and could be closely linked to three previously reported immune phenotypes: immune-excluded (Phenotype A), immune-desert (Phenotype B), and immune-inflamed (Phenotype C). Besides, we evaluated and validated the LRSRGs-related gene (ACADM, EHD4, FLOT1, GPC1, GSR, LRRC8A, NGFR, SDHB, and SEC61G) signature and found the risk score was an independent risk factor for CRC prognosis. CRC patients in different risk groups had different somatic mutation, tumor microenvironment and immunotherapy response. Finally, we also identified the potential therapeutic agents for CRC patients in different risk groups. In conclusion, we explored the key sialylated glycoproteins, which may play a key role in tumor LNM and clinical outcomes. And constructed the LRSRGs-phenotype and signature with prognostic and therapeutic predictive value in CRC, hoping to provide reliable scientific basis for future treatments in CRC patients.
Read full abstract