Thyroid nodule is defined as an endocrine malignancy that occurs in humans due to abnormal growth of cells. Recently, an increasing level of thyroid incidence has been identified worldwide. Thus, it is necessary to detect the nodules at an early stage. Ultrasonography is an important tool that is utilized for the detection as well as differentiation of malignant thyroid nodules from benign nodules. The nodules in ultrasound appear in different heterogenic forms, which are difficult to differentiate by the physicians. Further, large number of features available in US characteristics increases the computation time as well as complexity of classification. In this paper, Graph-Clustering Ant Colony Optimization based Extreme Learning Machine approach is proposed to achieve efficient diagnosis of thyroid nodules. It will enhance thyroid nodule classification by selecting only the optimal features and further using it for improving the function of classifier. The main goal of this technique is to differentiate the malignant nodules from the benign nodules. The performance of both feature selection and classification are evaluated through parameters such as accuracy, AUC, sensitivity and specificity. From the experimental results, it is revealed that the proposed method is significantly better than the existing methods. Thus, it is considered to be an effective tool for diagnosing the thyroid nodules with less complexity and reduced computation time.