Simple SummaryIn recent years, natural, plant-based antioxidants have been increasingly popular among poultry producers to boost production and welfare. Colocynth, i.e., Citrullus colocynthis, is an herbaceous plant known to have antioxidant properties. Employing laying hens, this study investigated the potency of dietary colocynth seed supplementation to reduce the deleterious effects of acute oxidative stress induced by paraquat injection. The results demonstrated that supplementing layers’ diets with colocynth seed at 0.1% alleviated oxidative stress responses and significantly improved egg production performance. Furthermore, the immunological responses of the acute-oxidative-stressed layers were enhanced with colocynth seed supplementation. Thus, the inclusion of colocynth seed in layer chickens’ diets can improve egg production performance, restore the redox balance, and enhance immunological responses when they are reared under acute oxidative stress conditions.Oxidative stress is a detrimental physiological state that threatens birds’ productivity and general health. Colocynth is an herbal plant known for its bioactive properties, and it is mainly known for its antioxidant effects. This study’s purpose was to investigate how effective colocynth seed is at lowering the detrimental impact of acute oxidative stress caused by paraquat (PQ) injection in laying hens. A total of 360 Hy-Line Brown chickens, aged 39 weeks, were gathered and divided into four equal groups (10 hens × 9 replicates) in a 2 × 2 factorial design. The experimental groups were given either a basal diet or the basal diet supplemented with colocynth seed (1% of diet). Starting from week 40 of age and for 7 successive days, the experimental groups were either injected daily with paraquat (5 mg/kg body weight) or with saline (0.5 mL, 0.9% NaCl). Egg production performance with selected stress biomarkers and immunological response parameters were investigated at the end of week 40 of age. Our data revealed a significant reduction in egg production with an increase in blood stress biomarkers (i.e., HSP-70, corticosterone, and H/L ratio) in PQ-injected groups compared with non-stressed groups. Furthermore, an unbalanced redox state was detected in acute oxidative stress groups, with a significant rise in lipid peroxidation level, a reduction in total antioxidant capacity (TAC), and a drop in superoxide dismutase (SOD) and catalase enzyme activity. Supplementing PQ-injected hens with colocynth seed reduced the deleterious effects of acute oxidative stress. There was a significant drop in stress biomarkers with a significant rise in antioxidant enzyme activity and TAC observed in the PQ-injected group provided with colocynth seed supplementation. Remarkably, supplementation of colocynth in the non-stressed group resulted in a significant 27% increase in TAC concentration and 17% higher SOD activity when compared with the non-stressed control group. Colocynth supplementation in the PQ-injected group elevated the total white blood cell count by 25% and improved the B-lymphocyte proliferation index (a 1.3-fold increase) compared with the PQ-injected group that did not receive supplementation. Moreover, the non-stressed colocynth-supplemented group had significantly higher cell-mediated and humoral immune responses than the non-stressed control group. This study demonstrated that colocynth seed supplementation in birds exposed to acute oxidative stress may effectively alleviate its negative impacts on production performance, immunological responses, and redox status. We also inferred that, under normal conditions, colocynth seed can be added to laying hens’ diets to stimulate production and ameliorate immune responses.