The industry has been significantly enhanced by recent developments in UAV collision avoidance systems. They made collision avoidance controllers for self-driving drones both affordable and hazardous. These low-maintenance, portable devices provide continuous monitoring in near-real time. It is inaccurate due to the fact that collision avoidance controllers necessitate trade-offs regarding data reliability. Collision avoidance control research is expanding significantly and is disseminated through publications, initiatives, and grey literature. This paper provides a concise overview of the most recent research on the development of autonomous vehicle collision avoidance systems from 2017 to 2024. In this paper, the state-of-the-art collision avoidance system used in drone systems, the capabilities of the sensors used, and the distinctions between each type of drone are discussed. The pros and cons of current approaches are analyzed using seven metrics: complexity, communication dependency, pre-mission planning, resilience, 3D compatibility, real-time performance, and escape trajectories.
Read full abstract