In many empirical studies of a large two-sided matching market (such as in a college admissions problem), the researcher performs statistical inference under the assumption that they observe a random sample from a large matching market. In this paper, we consider a setting in which the researcher observes either all or a nontrivial fraction of outcomes from a stable matching. We establish a concentration inequality for empirical matching probabilities assuming strong correlation among the colleges’ preferences while allowing students’ preferences to be fully heterogeneous. Our concentration inequality yields laws of large numbers for the empirical matching probabilities and other statistics commonly used in empirical analyses of a large matching market. To illustrate the usefulness of our concentration inequality, we prove consistency for estimators of conditional matching probabilities and measures of positive assortative matching.