The aim of this paper is to evaluate the electrical and thermal energies produced by a hybrid PV/T collector for Agadir city climatic conditions. To achieve the goal a theoretical model based on energy balance equations applied on each collector component is developed. The discretization of the equations is done using the finite difference method and solved numerically by TDMA matrix algorithm. The validity of the model is examined by the comparison of the our simulation findings with the available literature results. The thermal and electrical powers outputted by the glazed and unglazed hybrid collector are evaluated over the course of a typical day for Agadir region climate (Morocco), using various heat transfer fluids (water, water-EG mixture and Cu−water nanofluid). It is obtained that the employ of the nanofluid Cu−water improves the energy production of the hybrid collector in comparison to other working fluids. In fact, the high daily thermal and electrical energies are obtained using the nanofluid by approximately 5.548 kWh and 1.273 kWh respectively. The results showed that the produced thermal energy of the solar collector with glass is 37.4% higher than unglazed one. However, the supplied electrical energy by the glazing collector is lower than the unglazed system by almost 11.5%. In Agadir region, we recommend choosing the unglazed PV/T to benefit from the weather conditions and the solar potential of this region.