Procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (Plod2) is a key collagen lysyl hydroxylase mediating the formation of collagen fiber and stabilized collagen cross-links, and has been identified in several forms of fibrosis. However, the potential role and regulatory mechanism of Plod2 in liver fibrosis remain unclear yet. Mouse liver fibrosis models were induced by injecting carbon tetrachloride (CCl4) intraperitoneally. The morphology and alignment of collagen was observed under transmission and scanning electron microscopy, and extracellular matrix (ECM) stiffness was measured by atomic force microscopy. Large amounts of densely packed fibrillar collagen fibers produced by myofibroblasts (MFs) were deposited in fibrotic liver of mice reaching very large diameters in the cross section, accompanied with ECM stiffening, which was positively correlated with collagen-crosslinking. The expression of Plod2 was dynamically up-regulated in fibrotic liver of mouse and human. In MFs transfection of Plod2 siRNA made collagen fibers more orderly and linear aligned which can be easily degraded and protected from ECM stiffness. Administration of Plod2 siRNA preventatively or therapeutically in CCl4 mice reduced the average size of collagen bundles in transverse section, increased collagen solubility, decreases the levels of crosslinking products hydroxylysylpyridinoline and lysylpyridinoline, prevented ECM stiffening and alleviated liver fibrosis. Altogether, Plod2 mediates the formation of stabilized profibrotic collagen cross-links in MFs, leading to the alteration of collagen solubility and ECM stiffness, and eventually aggravates liver fibrosis, which provide potential target for the treatment of liver disease.
Read full abstract