Colistin resistance in Acinetobacter baumannii is an emerging problem that limits antimicrobial therapy options. We isolated two pairs of colistin susceptible and colistin-resistant A. baumannii (K1007/K1006 and K408/K409) from two patients diagnosed with carbapenem-resistant A. baumannii infection. Colistin susceptible isolates were exposed to in vitro colistin induction for 50 generations. The selected cell populations were subjected to DNA and RNA sequencing and phenotypic assays. In the in vitro induction assay, K408 gained colistin resistance on the corresponding day of clinical resistance (K408-G25) and got resensitized to colistin in the consecutive generation (K408-G26). A significant upregulation of ompW, ata, adeFGH genes on K408-G25 was followed by a downregulation upon resensitization to colistin (G26). Despite the upregulation of the ompW gene in transcriptomic analysis, the ompW protein disappeared on K408-G25 and recovered in the resensitized generation (G26). In parallel, disrupted cell membrane integrity recovered in K408-G26. In the K408-G25, downregulation of pbpG and upregulation of pbp1a/pbp3 genes decreased serum-resistance which was reversed in the resensitized generation (G26). The K1007 did not gain colistin resistance amongst 50-generations, however, the generation corresponding to clinical resistance day (K1007-G9) had a similar trend with K408-G25. The clinical colistin-resistant K409 and K1006 had SNPs on pmrA and pmrB genes. In this study, we observed that A. baumannii regulates adhesion, efflux pumps and serum-resistance associated genes as an early response to colistin stress. Besides, the ompW protein disappears in the cell membrane of colistin resistant cells which recovers after resensitization to colistin. The lack of ompW protein in colistin-resistant cells should be taken into consideration for escape mutants in development of antivirulence vaccination or treatment options.
Read full abstract