Antimicrobial resistance (AMR) is a major global public threat, now largely reported in natural environments. Seabirds are carriers of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-E. coli), but different foraging and breeding behaviour could impact ESBL-E. coli circulation. We compared the prevalence and genetic determinants of ESBL-E. coli from resident Kelp gulls (Larus dominicanus, Ld), migratory Franklin's gulls (Larus pipixcan, Lp), and endemic Peruvian pelicans (Pelecanus thagus, Pt) from the Humboldt Current Ecosystem (HCE) of central Chile. From 2020 to 2022, we collected 699 fresh faecal samples (Ld = 449, Lp = 116, Pt = 134), and isolated 271 ESBL-E. coli (39 %). Whole-genome-sequencing (WGS) was performed on 85 E. coli selected isolates to identify their Sequence Type (ST), AMR genes, virulence genes, mobile genetic elements (MGE), and to assess potential interspecies transmission. ESBL-genes were detected in the remaining ESBL-E. coli isolates by PCR. ESBL-E. coli prevalence in Ld (46 % [CI: 42–51 %]) and Pt (34 % [CI: 27–43 %]) was higher than in Lp (15 % [CI: 9–22 %]). WGS revealed 41 ESBL-E. coli STs including pandemic clones ST10, ST58, ST131 and ST410. The blaCTX-M-1 and blaCTX-M-15 genes were the most prevalent among ESBL genes, and were mostly associated with MGE IncI1-I(Alpha) and ISEc9. We also report the pAmpC blaCMY-2 gene associated to MGE Inc1-I(Alpha) and IS640 in two E. coli from a Ld and a Lp. Eight ESBL-E. coli of the same ST were shared by at least two seabird species, including ST10 (Ld and Pt); ST88, ST410 and ST617 (Pt and Lp); ST38, ST58, ST131, and SST1722 (three species). Single nucleotide polymorphism (SNP) phylogenetic analyses of ST38, ST617 and ST1722 showed a low difference of SNPs between STs found in different seabird species, suggesting ESBL-E. coli clonal exchanges. Our results highlight ESBL-E. coli dissemination across seabirds of the HCE, including species that unusually forage on human waste like pelicans.