Unfrozen water content (UWC) plays a critical role in determining the thermal, hydraulic, and mechanical properties of frozen soils. Existing empirical, semi-empirical, and theoretical models for UWC estimation have limitations in terms of accuracy as well as generalizability. To address these challenges, the present study explored the application of six machine learning techniques to predict UWC in frozen soils: Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), K-Nearest Neighbors (KNN), Support Vector Regression (SVR), and Backpropagation Neural Network (BPNN). Considering the UWC hysteresis phenomenon between the freezing and thawing processes, experimental UWC data collected from the literature were separated into two sub-datasets: freezing branch dataset (FBD) and thawing branch dataset (TBD). Based on that, a comprehensive framework integrating Bayesian optimization and 10-fold cross-validation was established to optimize the six models' hyperparameters and to evaluate their performance. The results highlighted significant variations in the predictive capability among the six machine learning models, with ensemble methods (i.e., RF, XGBoost, LightGBM) generally demonstrating superior accuracy. Feature importance analysis, robustness checks, and uncertainty quantification further elucidated the strengths and limitations of each model. The present study provides profound insights into the selection and application of machine learning models for accurately modeling the properties of frozen soils for cold regions science and engineering.