Gas phase reactions have been a subject of research interest, enabling reliable strategies to explore the stability and reactivity of metal clusters as well as to probe novel superatoms that form the building blocks to assemble new materials with tailored properties. Coinage metal clusters have attracted great research attention due to their simple electronic shell structures and rich photochemical and catalytic properties at relatively low cost. This perspective focuses on the recent progress made in studying the gas phase reactions of undamaged and single-atom-doped Cun±,0 and Agn±,0 clusters with O2, CO, and NO molecules. It covers various aspects, such as reaction mechanisms, relationships between structure and activity, control of reactivity by changing cluster size and composition, and the identification of novel superatoms (Cu18-, Ag13-, Ag17-, and Ag15O+). Lastly, we provide a detailed account of the obstacles and prospective avenues for future research in order to establish a connection between these findings and nanocluster systems that have practical applications.
Read full abstract