Landslides recurrently cause severe damage and, in some cases, the full disruption of many highways in mountainous areas, which can last from a few days to even months. Thus, there is a high demand for monitoring tools and precipitation data to support highway alignment selections before construction. In this study, we proposed a new system highway alignment selection method based on coherent scatter InSAR (CSI) and ~1 km high-spatial-resolution precipitation (HSRP) analysis. Prior to the CSI, we calculated and analyzed the feasibility of Sentinel-1A ascending and descending data. To illustrate the performance of the CSI, CSI and SBAS–InSAR were both utilized to monitor 80 slow-moving landslides, which were identified by optical remote-sensing interpretation and field investigation, along the Barkam–Kangting Highway Corridor (BKHC) in southwestern China, relying on 56 Sentinel-1A descending images from September 2019 to September 2021. The results reveal that CSI has clearer deformation signals and more measurement points (MPs) than SBAS-InSAR. And the maximum cumulative displacements and rates of the landslides reach −75 mm and −64 mm/year within the monitoring period (CSI results), respectively. Furthermore, the rates of the landslides near the Jinchuan River are higher than those of the landslides far from the river. Subsequently, to optimize the highway alignment selection, we analyzed the spatiotemporal evolution characteristics of feature points on a typical landslide by combining the −1 km HSRP, which was calculated from the 30′ Climatic Research Unit (CRU) time-series datasets, with the climatology datasets of WorldClim using delta spatial downscaling. The analysis shows that the sliding rates of landslides augment from the back edge to the tongue because of fluvial erosion and that accelerated sliding is highly related to the intense precipitation between April and September each year (ASP). Consequently, three solution types were established in our method by setting thresholds for the deformation rates and ASPs of every landslide. Afterward, the risk-optimal alignment selection of the BKHC was finalized according to the solution types and consideration of the construction’s possible impacts. Ultimately, the major problems and challenges for our method were discussed, and conclusions were given.
Read full abstract