Realization of a room-temperature ultrafast photon-number-resolving quantum nondemolition (QND) measurement would have significant implications for photonic quantum information processing, enabling, for example, deterministic quantum computation in discrete-variable architectures, but the requirement for strong coupling has hampered the development of scalable implementations. In this work, we propose and analyze a nonlinear-optical route to photon-number-resolving QND using quadratic (i.e., χ(2)) nonlinear interactions. We show that the coherent pump field driving a frequency-detuned optical parametric amplifier (OPA) experiences displacements conditioned on the number of signal Bogoliubov excitations. A measurement of the pump displacement thus provides a QND measurement of the signal Bogoliubov excitations, projecting the signal mode to a squeezed photon-number state. We then show how our nonlinear OPA dynamics can be utilized to deterministically generate Gottesman-Kitaev-Preskill states with only additional Gaussian resources, offering an all-optical route for fault-tolerant quantum information processing in continuous-variable systems. Finally, we place these QND schemes into a more traditional context by highlighting analogies between the frequency-detuned optical parametric oscillator and multilevel atom-cavity quantum electrodynamics systems by showing how continuous monitoring of the outcoupled pump quadrature induces conditional localization of the intracavity signal mode onto squeezed photon-number states. Our analysis suggests that our proposal may be viable in near-term χ(2) nonlinear nanophotonics, highlighting the rich potential of the OPA as a universal tool for ultrafast non-Gaussian quantum state engineering and quantum computation.Received 18 October 2022Accepted 8 March 2023DOI:https://doi.org/10.1103/PRXQuantum.4.010333Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum computationQuantum engineeringQuantum information processingQuantum information processing with continuous variablesQuantum opticsQuantum state engineeringSecond order nonlinear optical processesQuantum InformationAtomic, Molecular & Optical
Read full abstract