Ergotropy is defined as the maximum amount of work that can be extracted through a unitary cyclic evolution. It plays a crucial role in assessing the work capacity of a quantum system. Recently, the significance of quantum coherence in work extraction has been theoretically identified, revealing that quantum states with more coherence possess more ergotropy compared to their dephased counterparts. However, an experimental study of the coherent ergotropy remains absent. Here, we report an experimental investigation of the coherent ergotropy in a single spin system. Based on the method of measuring ergotropy with an ancilla qubit, both the coherent and incoherent components of the ergotropy for the nonequilibrium state were successfully extracted. The increase in ergotropy induced by the increase in the coherence of the system was observed by varying the coherence of the state. Our work reveals the interplay between quantum thermodynamics and quantum information theory, future investigations could further explore the role other quantum attributes play in thermodynamic protocols.
Read full abstract