AbstractWe give an explicit algorithm for calculating the Kauffman bracket of a link diagram from a Goeritz matrix for that link. Further, we show how the Jones polynomial can be recovered from a Goeritz matrix when the corresponding checkerboard surface is orientable, or when more information is known about its Gordon–Litherland form. In the process we develop a theory of Goeritz matrices for cographic matroids, which extends the bracket polynomial to any symmetric integer matrix. We place this work in the context of links in thickened surfaces.