Cold brew coffee has gained significant popularity in the global market. This study examined the differences in chemical properties and flavor of cold brew coffee during storage, which was subjected to low-temperature pasteurization using induced electric field (IEF) at temperatures of 52 °C and 58 °C for 92 s, corresponding to 18.52 V/cm and 25.92 V/cm. Then, a high-temperature short-time (HTST) pasteurization was performed at 93 °C for 2 min as the control. Microbial analysis demonstrated that IEF treatment at 58 °C achieved a bactericidal effect. Both the IEF and HTST groups exhibited consistent trends in total sugar and total phenol content, showing approximately 28 μg GAE/mL after 28 days for IEF-2 group, compared to 25 μg/mL for HTST. Flavor analysis indicated that IEF group preserved the aroma characteristics during storage period. Further, IEF treatment effectively retained the key aroma compounds in cold brew coffee through GC–MS analysis, particularly pyrazine compounds with a relative content increased by 0.96 % in IEF-2 group after 28 days. Moreover, the bioactive compounds initially increased and subsequently decreased over the storage.
Read full abstract