Structures of liquid water are controversial not only in supercooled polyamorphism but also in stable bulk liquids in the high temperature and pressure range. Several experimental studies in bulk liquid have assumed the existence of three different liquid water structures. If indeed the three liquid water structures are different, they should be clearly distinguished by some measure other than density that characterizes the difference in structural order. In this study, whether the three different bulk liquid water structures are real or not is numerically verified based on molecular simulations using a reliable water molecular model. Since these liquid water structures have been suggested to be related to three different crystal structures (i.e., ice Ih, III, and V), liquid structures are sampled from the vicinity of the ice Ih-liquid coexistence point, the ice III-V-liquid triple point, and the ice V-VI-liquid triple point, respectively. An attempt is made to introduce local order parameters (LOPs) as an indicator to distinguish these structures. A fast and exhaustive LOP search is performed by the molecular assembly structure learning package for Identifying order parameters. The selected LOP distinguishes the molecular structures of three different stable liquid waters with high accuracy, providing numerical evidence that these structural orders differ from each other. Furthermore, regions of the liquid water structures are drawn on a phase diagram using the LOP, demonstrating their consistency with experimental studies.
Read full abstract