Chronic kidney disease (CKD) can greatly increase the mortality risk for clinical patients, with a major challenge being the accurate detection of uremic toxins. Metal organic frameworks (MOFs)-based colorimetry/fluorescence dual-mode probe have shown great potential for bio-detection. However, one of the challenges for MOFs-based nanoprobe is to effectively improve the activity of mimetic enzymes for colorimetric assays while maintaining their outstanding luminescence response for fluorescence sensing. Here, we developed a novel bimetallic Zr/Ce-MOFs, which possesses high catalytic activity and excellent luminescence properties for dual-mode sensing of uremic toxins. The co-existence of Ce and Zr in the MOFs improves the catalytic activity for colorimetric detection of phosphate ions (one type of uremic toxins) and the strong coordinate covalent interaction between phosphate ions and Zr/Ce leads to a significant fluorescence enhancement of the MOFs. Furthermore, we achieved high sensitivity phosphate ions analysis in serum samples. This strategy provides an easy and reliable platform for the detection of uremic toxins in complicated physiological environment.
Read full abstract