In this paper, the new subclass Sb,λ,δ,pn(α)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {S}^n_{b,\\lambda ,\\delta ,p} ({\\alpha })$$\\end{document} of a linear differential operator’s Nλ,δ,pnf(ζ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {N}_{\\lambda ,\\delta ,p}^{n}f(\\zeta )$$\\end{document} associated with multivalent analytical function has been introduced. Further, the coefficient inequalities, extreme points for the extremal function, sharpness of the growth and distortion bounds, partial sums, starlikeness, and convexity of the subclass is investigated.