Until now, research has not taken into consideration the physicochemical purine-pyrimidine symmetries of the genetic code in the transcription and translation processes of proteinogenesis. Our Supersymmetry Genetic Code table, developed in 2022, is common and unique for all RNA and DNA living species. Its basic structure is a purine-pyrimidine symmetry net with double mirror symmetry. Accordingly, the symmetry of the genetic code directly shows its organisation based on the principle of nucleotide Watson-Crick and codon-anticodon pairing. The maximal purine-pyrimidine symmetries of codons show that each codon has a strictly defined and unchangeable position within the genetic code. We discovered that the physicochemical symmetries of the genetic code play a fundamental role in recognising and differentiating codons from mRNA and the anticodon tRNA and aminoacyl-tRNA synthetases in the transcription and translation processes. These symmetries also support the wobble hypothesis with non-Watson-Crick pairing interactions between the translation process from mRNA to tRNA. The Supersymmetry Genetic Code table shows a specific arrangement of the second base of codons, according to which it is possible that an anticodon from tRNA recognises whether a codon from mRNA belongs to an amino acid with two or four codons, which is very important in the purposeful use of the wobble pairing process. Therefore, we show that canonical and wobble pairings essentially do not lead to misreading and errors during translation, and we point out the role of physicochemical purine-pyrimidine symmetries in decreasing disorder according to error minimisation and preserving the integrity of biological processes during proteinogenesis.
Read full abstract