GPS L2C signal is a recently added civil signal to L2 frequency and is constructed by time division multiplexing of civil moderate (L2-CM) and civil long (L2-CL) code signals. While the L2-CM code is 20 ms-periodic and modulates satellite navigation message, the L2-CL code is 1.5s-periodic with 767,250 chips long code sequence and carries no data. Therefore, the L2-CL code signal allows receivers to perform a very long coherent integration. However, due to the length of the L2-CL code, the acquisition of the L2-CL code signal may take too long or require too much hardware resources. In this paper, we propose a three-step ultra-fast L2-CL code acquisition (TSCLA) technique for dual band GPS receivers. In the proposed TSCLA technique, a dual band GPS receiver sequentially acquires the coarse/acquisition (C/A) code signal at L1 frequency, the L2CM code signal, and the L2-CL code signal to minimize mean acquisition time (MAT). The theoretical performance analysis and numerous Monte Carlo simulations show the significant advantage of the proposed TSCLA technique over conventional techniques introduced in the literature.
Read full abstract