BackgroundA symbiotic connection between Piriformospora indica and Bacopa monnieri (L.) Wettest, obtained through co-cultivation synergism, was found to improve growth, biomass production, and bacoside content in the plants. Brahmi (B. monnieri L.), a well-known Indian plant prized for its memory-boosting properties, has a lengthy history and a premium price tag. Because of its remarkable ability to colonize a wide variety of plant species, the axenically cultivable mycorrhiza-like endophytic fungus P. indica has gained a lot of interest recently.MethodsIn the current study, fungal spores from recently revived cultures were added to jam bottles next to rooted Brahmi plants for in vitro co-cultivation. The control plants were left without fungal discs. Pre-rooted micro-propagated Brahmi plants were treated with agar discs containing actively growing hyphae. For a period of 3 months, both trials were conducted with a fully randomized setup. Microscopy of the treated and control plant roots verified co-cultivation.ResultsMicroscopic examination of the roots of co-cultivated plants reveals a high degree of colonization with host plants. These endophytic fungal structures include intracellular chlamydospores, and arbuscules, an intercellular and intracellular hyphae network, and a mycelial network on the root surface. In both in vitro and in vivo co-cultivation studies, the plant extended the host plant’s lifespan in 3 months by displaying continuous regeneration; in contrast, the control plant displayed signs of senescence. With biomass exceeding the control by 1.18 times in vivo and 1.28 times in vitro. In vitro, co-cultivation circumstances also led to an increase in the rate of utilization of nutritional medium. In comparison to the control, the amount of bacoside increases to 100% in vivo after a month of co-cultivation and 33% in vitro after 3 months.ConclusionsIn the present investigation, in vivo co-cultivation showed a favorable interaction effect on biomass production as well as bacoside content, which can satisfy the raw material demands of Brahmi plants in pharmaceutical industries.
Read full abstract