Doping via metal/nonmetal/metalloid dopants in to the crystal structural surface of cobalt oxide nanoparticles are promising for creating electroactive supercapacitors with excellent electrochemical performance. Herein, we fabricate boron doped cobalt oxide nanoparticles (B@Co3O4) via a facile co-precipitation route for supercapacitor applications. The incorporation of boron into cobalt oxide nanoparticles (3M B@Co3O4) brings a ∼4.2-fold increase in a specific surface area (548.126 m2g-1), decrease in band gap energy and reduced in crystalline size. Consequently, the B doped Co3O4 NPs displays a maximum specific capacitance of 998.12 F/g, which is ∼1.50-fold increased as compared to 668.79 F/g of the pristine Co3O4 NPs at current density 1.5mA/cm2 and scan rate 2mV/s in 1M KOH electrolyte solution. Moreover, 3M B@Co3O4 NPs demonstrates excellent power density 711.14W/kg and high energy density 195.96Wh/kg Wh/kg. Hence, we believe that boron doped cobalt oxide nanoparticles are a promising electroactive material for the supercapacitive applications.
Read full abstract